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Phosphorus (P) is an essential nutrient in cropland and improved grassland
( McDowell et al., 2020)
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Results & Discussion

Acidic soils were

Methods & Materials

Acidic soils

TP = 1,303 mg/kg
M3P =336 mg/kg
(25% of total P)

Organic soils

TP =1,036 mg/kg
M3P =40 mg/kg
(4% of total P)
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Calcareous soils

M3P = 187 mg/kg?
(17% of total P)

3 key approaches to
decode legacy P
chemistry

Storage Capacity by
ICP-OES and UV-vis spectrometer

%? Resonance

groups in soils

and mineral-bound P in soils

Hedley Fractionation and Total Soil P

Solution-state 3P Nuclear Magnetic

(NMR) to identify different functional P

K-edge Xray Absorption Near Edge
Spectroscopy (XANES) to identify inorganic

TP = 1,081 mg/kg Figure 3: A map presenting sampling sites of three types of soils, including acidic

soils (1-5), organic soils (6-9), and calcareous soils (10-18)
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Figure 4: Three keys to decode legacy-P chemistry in acidic, organic and calcareous soils
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Figure 7: NMR Spectra of an acidic soil sample
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Acidic and calcareous soils were dominated by
bioavailable orthophosphate and organic
monoesters, while Organic soils were dominated
by organic monoesters and diesters
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Figure 8: Different P functional compounds identified in three soil types. Each soil has two
depths: 0-15 cm and 15-30 cm, except sample 5

Preliminary results show no pre-edge feature at 2148.9 eV,
indicating the absence of Fe(lll)-P bonds in all samples. Organic (8)
and calcareous (15) soils resemble hydroxyapatite, while acidic soils
(4) align with Na-phytic acid reference spectra
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Figure 9: XANES K-edge spectra of (A) P reference minerals and (B) three soil types
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Conclusions

B *»*Acidic soils functioned primarily as a P
sink, with legacy P dominated by
humic/fulvic fractions. NMR analysis
revealed prevalent bioavailable

orthophosphate and organic monoester
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*»*Organic soils acted primarily as a P sink,

with legacy P dominated by residual
fractions. NMR analysis revealed prevalent
monoester and diester
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s Calcareous soils acted as both a P sink
and source, with legacy P dominated by
........ Ca/Mg fractions. NMR analysis revealed
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