# Weed management in sugarcane

#### **Dr. Calvin Odero**

University of Florida Everglades Research & Education Center

dcodero@ufl.edu



### **USA** sugarcane production





### **Florida sugarcane production**





### EAA organic soils

- EAA is dominated by organic soils underlain by limestone rock layer
- Soils have high soil organic matter content of up to 85%
- Weed control especially with soil applied herbicides is more difficult on these soils because of
  - High cation exchange capacity, large soil microbial populations, and relatively high soil moisture and temperature often associated with herbicide adsorption and metabolism by soil microorganisms
  - These factors combine to promote rapid weed growth while binding or degrading soil-applied herbicides thus significantly reducing their efficacy







### Florida sugarcane crop cycle

- Planting season: September to December
- Harvest season: mid-October to March/April
- Planting and harvesting coincides with dry season
- Planting done either
  - Following fallow period
    - Temporary rotation with different crops following final ration
      - Sweet corn, rice, radish, green bean, leafy green vegetables
      - Long sugarcane production cycle in combination with rotation with grass crops results in heavy pressure of mostly annual and perennial grasses
  - Successive
    - Replanting several weeks after final ratoon
      - Not recommended in fields with heavy grass pressure especially perennial grasses



## Weeds in Florida sugarcane

 Florida→ burning fields prior harvest→ no straw→ mostly grasses and small seeded broadleaf weeds







 Brazil→ green harvesting→ more straw→ less grasses → mostly large seeded broadleaf weeds









### Weeds in Florida sugarcane

#### <u>Grasses</u>

#### **Most prevalent**

- Panicum dichotomiflorum
- Cynodon dactylon

#### Others

- Eleusine indica
- Digitaria ciliaris
- Digitaria ischaemum
- Dactyloctenium aegyptium
- Sorghum almum
- Pennisetum purpureum
- Panicum repens

#### <u>Sedges</u>

#### Most prevalent

- Cyperus esculentus
- Cyperus rotundus









### Weeds in Florida sugarcane

#### Most prevalent broadleaf weeds

- Chenopodium album
- Amaranthus spinosus

#### Others

- Ambrosia artemisiifolia
- Portulaca oleracea
- Ipomea spp.
- Senna accidentalis
- Senna obtusifolia
- Solanum americanum
- Alternanthera philoxeroides



# Chenopodium album

# Amaranthus spinosus



Florida broadleaf weed species are suitable food sources and oviposition sites for *Diaprepes abbreviatus*; however, sugarcane is generally more preferred for oviposition

Odero et al. (2013) J. Ento. Sci. 48:81-89



### Weed management in Florida sugarcane

- Major cost associated with sugarcane production
- Weed control is most critical early in the season prior to sugarcane canopy closure over the row middles
- Weeds that mature and produce seed become
  - Sources of seed bank replenishment and reinfestation in subsequent years





#### Critical Timing of Fall Panicum (Panicum dichotomiflorum) Removal in Sugarcane

Dennis C. Odero, Mathew Duchrow, and Nikol Havranek\*

molibles, de caña, y de sucrose disminuyeron al aumentar la duración de la interferencia de *P. dichotomiflorum* durante toda la temporada resultó en pérdidas de rendimiento de 34 a 60%, 34 a 62%, y 44 a 60% de tallos molibles, caña, y sucrose, respectivamente. El momento crítico para le eliminación de *P. dichotomiflorum* con base en AYL de 5 y 10% de tallos molibles fue 5 y 9 semanas después de la emergencia (WAE) de la caña de azúcar. A 5 y 10% de AYL, el momento crítico de eliminación de *P. dichotomiflorum* varió desde 5 a 9 WAE y 6 a 8 WAE para la pérdida de rendimiento de caña y sucrose, respectivamente. Estos resultados muestran que *P. dichotomiflorum* compite con la caña de azúcar, temprano durante la temporada de crecimiento, lo que demuestra la necesidad de controlar esta maleza a tiempo, temprano en la temporada, para reducir sus efectos negativos sobre el rendimiento.





### Weed management in Florida sugarcane

- Weed management in Florida sugarcane uses a combination of different methods
  - Prevention
  - Eradication
  - Control



### Weed management: prevention

- Keeping weeds out of sugarcane fields
- Accomplished by
  - Field sanitation
  - Control of volunteer weeds
  - Planting clean seed cane or certified rotational crop seed
  - Cleaning field equipment
  - Scouting for new infestations, spot treatments
- When properly employed, greatly reduces weed problems





### Weed management: eradication

- Complete elimination of all living plants including their vegetative propagules and seeds
- Justified only for the elimination of perennial weeds in limited areas in sugarcane fields using mainly glyphosate
  - Sorghum almum
  - Pennisetum purpureum
  - Panicum repens



### Weed management: control

- Process of limiting weed infestations and minimizing weed competition in sugarcane fields
  - Goal: have minimal effect of weeds on sugarcane growth and yield
- Degree of control is a matter of economics, the balance between cost of control and sugarcane yield loss
- Methods of weed control
  - Mechanical/physical
  - Cultural
  - Chemical



### Weed control: mechanical

- Cultivation conducted before planting during field
  preparation to
  - Control emerged weed seedlings
  - Destroy residues from the previous crop
  - Aid in soil aeration and water infiltration
- Important especially when preemergence herbicide use is limited due to dry conditions associated with sugarcane planting and harvesting in Florida



### Weed control: mechanical

- Cultivation when weeds are not present is not recommended because it can
  - Encourage germination of additional weed seeds
  - Remove the layer of herbicide present when soil-applied herbicides are used
- In ratoon crops, mechanical cultivators must
  - Cut through surface debris and thoroughly mix the soil
  - Be between row middles and not over the row













# Weed control: cultural

#### Crop rotation

- Allows for breaking of weed life cycles
- Allows for rotation of herbicides and other weed control programs
  - Leafy green vegetables, sweet corn, snap bean, radishes, rice
- **Bare fallow period** has effectively been used to manage troublesome perennial grasses (*Cynodon dactylon*)

- Using multiple cultivation & glyphosate application









### Weed control: cultural

- Fertilizer placement
  - Placing the fertilizer where sugarcane and not weeds has access allows the cane to be more competitive
    - Banding reduces competitiveness and population density of weeds
- Selection of sugarcane cultivars that have quick canopy closure







### Weed control: chemical

- Useful and economical tool in sugarcane production
- Must be incorporated into an overall management plan to obtain maximum benefit
- Application
  - Preemergence (PRE)
  - Postemergence (POST)
  - POST-directed
- Sprayer calibration is important before herbicide application



# Weed control: herbicides

#### Preemergence

- Atrazine
- Metribuzin
- Pendimethalin
- S-metolachlor \*



#### Postemergence

- 2,4-D amine
- Dicamba
- Ametryn
- Atrazine
- Metribuzin
- Mesotrione
- Topramezone<sup>\*</sup>
- Asulam
- Halosulfuron
- Trifloxysulfuron



#### **Preemergence herbicides: pendimethalin**



Dissipation of oil-based pendimethalin

Odero & Shaner (2014) Weed Technol. 28:82-88

#### **Preemergence herbicides: triazines**







Dissipation of metribuzin DT<sub>50</sub> 19-24 days

Odero & Shaner (2014) Weed Technol. 28:578-586

#### **Preemergence herbicides: S-metolachlor**

a. 2013-2014

b. 2014-2015

 $R^2 = 0.43$ 

 $R^2 = 0.26$ 

Half life = 62 days

56

70

84

Half life = 19 days

**Organic soil** 

Y = 3768.91 - 42.86\*DAT

Y = 3792.58 - 27.57\*DAT

6000

5000

4000

3000

2000

1000

6000

5000

4000

3000

2000

1000

0

14

28

42

Days after treatment (DAT)

0

S-metolachlor in soil (µg kg<sup>-1</sup>)

S-metolachlor in soil (µg kg<sup>-1</sup>)



Sandy soil

Fernandez et al. In preparation

#### Preemergence herbicides: Indaziflam



#### Preemergence herbicides: Indaziflam



#### Indaziflam (44 DAT)



#### Indaziflam (67 DAT)







#### **Postemergence** herbicides

Broadleaf weeds 2,4-D, dicamba, atrazine, metribuzin, mesotrione, topramezone

Grasses Asulam, trifloxysulfuron, ametryn\*, metribuzin\*

Sedges Halosulfuron

# Topramezone

- POST annual broadleaf and grass control in corn
- Inhibits carotenoid biosynthesis (HPPDinhibitor Group 27)
- Efficacy increased with low rates of PS II inhibiting herbicides



# **Topramezone: 14 DAT**





# **Topramezone: 42 DAT**







42 DAT





42 DAT



# Lumax

• A commercial premix of

– Atrazine + Mesotrione + S-metolachlor

PRE or early POST

- Control of fall panicum & other weed species





### Integrated Weed Management (IWM)

- Development of a weed management program using a combination of preventive, cultural, mechanical, and chemical practices
- Applying the principles of IWM
  - Minimize overall economic impact of weeds
  - Reduce environmental impacts of herbicides
  - Provide optimum economic returns
- Development of IWM program is based on a few general rules that can be used on any field



### 2. Help the crop compete against weeds

- Several things can be done to give the crop an advantage over weeds
  - Fertilizer placement
  - Competitive varieties



- 3. Keep weeds off balance
- Don't give weeds a chance to adopt
  - Crop rotation





### 4. Making a control decision

- Scout your field to assess the type and number of weeds to help determine adequate spray operation and any other control measure
- Economic threshold level of weed infestation at which the cost of weed control equals the increased return on the crop yield
- Consider the cost of delaying weed control



What constitutes an effective weed management program?





#### What constitutes an effective weed management program?

- Identify the weed(s)
- Select proper control measure(s)
- Use an integrated approach (use multiple tools)
- Implement the program
- Document and keep records
  - Field history
  - Cropping practices





### Remember for chemical weed control

- Do it right
  - Proper herbicide(s)
  - Proper herbicide rate(s)
  - Proper placement of material
  - Proper time of application
  - Proper manner of application
- READ THE HERBICIDE LABEL

