Weed control and herbicides used in Florida sugarcane

Calvin Odero
Everglades Research & Education Center
Sugarcane production in Florida

- Approximately 400,000 acres of sugarcane
 - 74% on organic/muck soils of the EAA
 - >30% organic matter
 - 26% on mineral soils
 - <20% organic matter
Florida sugarcane crop cycle

• 3-to-4-year crop cycle
 – Plant cane – 28.5%
 – Ratoon cane – 71.5%
 • 1st ratoon (29.5%), 2nd ratoon (29.1%), 3rd ratoon (9.8%), 4th ratoon or older (3.1%)

• Planting season: mid-August to early-January
 • Following fallow period
 – Bare fallow, rotation with other crops, or flooding following final ratoon
 • Successive
 – Replanting after the final ratoon (no fallow period)
 – Not recommended in fields with heavy grass pressure especially where bermudagrass is prevalent

• Harvest season: mid-October to April/May
• Planting and harvesting coincides with dry season
Sugarcane planting
Weeds in Florida sugarcane

Burning fields prior to harvest → No straw → Mostly grasses and small seeded broadleaf weeds

Green harvesting (e.g. Brazil) → more straw → less grasses → mostly large seeded broadleaf weeds
Weeds in Florida sugarcane

Grasses

Most prevalent
- Fall panicum
- Bermudagrass

Others
- Goosegrass
- Crabgrasses
- Crowfoot grass
- Columbus grass
- Elephantgrass
- Field sandbur
- Torpedograss

Sedges

Most prevalent
- Yellow nutsedge
- Purple nutsedge
Weeds in Florida sugarcane

Most prevalent broadleaf weeds
- Common lambsquarters
- Spiny amaranth
- Common ragweed
- American black nightshade

Others
- Common purslane
- Sickle pod
- Coffee senna
- Alligatorweed
- Morning glories (late in the season)
Weed control: mechanical
Weed control: mechanical
Weed control: mechanical
Weed control: mechanical
Weed control: cultural

Sweet corn rotation
Weed control: cultural

Lettuce rotation
Weed control: cultural

Rice rotation
Weed control: herbicides

- Applied preemergence, postemergence, post-directed
- Accurate herbicide application timing and proper calibration of application equipment are extremely important to maximize weed control and herbicide selectivity
Preemergence herbicides

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>MOA</th>
<th>Chemical family</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrazine</td>
<td>Photosystem II inhibitor</td>
<td>s-triazine</td>
<td>5</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>Photosystem II inhibitor</td>
<td>as-triazine</td>
<td>5</td>
</tr>
<tr>
<td>Pendimethalin</td>
<td>Microtubule inhibitor</td>
<td>Dinitroaniline</td>
<td>3</td>
</tr>
<tr>
<td>S-metolachlor + Atrazine + Mesotrion</td>
<td>Long-chain fatty acid Photosystem II inhibitor HPPD inhibitor</td>
<td>Chloroacetamide s-triazine Triketone</td>
<td>15 5 27</td>
</tr>
<tr>
<td>Mesotrion</td>
<td>HPPD inhibitor</td>
<td>Triketone</td>
<td>27</td>
</tr>
<tr>
<td>Clomazone</td>
<td>Diterpene synthesis inhibitor</td>
<td>Isoxazolidinone</td>
<td>13</td>
</tr>
<tr>
<td>Diuron</td>
<td>Photosystem II inhibitor</td>
<td>Phenylurea</td>
<td>7</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>EPSP synthase inhibitor</td>
<td>Organophosphorus</td>
<td>9</td>
</tr>
</tbody>
</table>
Most commonly used PRE herbicides

- **Atrazine (4 – 8 pt/acre)**
 - Broadleaf weeds
 - Tank-mixed with Prowl H₂O (4.2 – 8.4 pt/acre) for grass control
- **Metribuzin (1 - 2⅓ lb/acre)**
 - Broadleaf weeds and some grasses
 - Tank-mixed with Prowl H₂O (4.2 – 8.4 pt/acre) for grass control
 - Only used on organic soils
- **Pendimethalin (4.2 – 8.4 pt/acre)**
 - Annual grasses
 - Tank-mixed with either atrazine or metribuzin
- **S-metolachlor + atrazine + mesotrione (3.0 qt/acre)**
 - Grasses and broadleaf weeds
- **Glyphosate (3.25 – 4 qt/acre)**
 - Only used before cane spiking
<table>
<thead>
<tr>
<th>Herbicide</th>
<th>MOA</th>
<th>Chemical family</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrazine</td>
<td>Photosystem II inhibitor</td>
<td>s-triazine</td>
<td>5</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>Photosystem II inhibitor</td>
<td>as-triazine</td>
<td>5</td>
</tr>
<tr>
<td>Ametryn</td>
<td>Photosystem II inhibitor</td>
<td>s-triazine</td>
<td>5</td>
</tr>
<tr>
<td>S-metolachlor + Atrazine + Mesotrione</td>
<td>Long-chain fatty acid Photosystem II inhibitor HPPD inhibitor</td>
<td>Chloroacetamide s-triazine Triketone</td>
<td>15 5 27</td>
</tr>
<tr>
<td>Mesotrione</td>
<td>HPPD inhibitor</td>
<td>Triketone</td>
<td>27</td>
</tr>
<tr>
<td>2,4-D amine</td>
<td>Auxin growth regulator</td>
<td>Phenoxyacetic acid</td>
<td>4</td>
</tr>
<tr>
<td>Dicamba</td>
<td>Auxin growth regulator</td>
<td>Benzoic acid</td>
<td>4</td>
</tr>
<tr>
<td>Topramezone</td>
<td>HPPD inhibitor</td>
<td>Pyrazolone</td>
<td>27</td>
</tr>
</tbody>
</table>
Postemergence herbicides: broadleaves

• Triazines
 – Atrazine at 4 – 8 pt/acre – annual broadleaves
 – Metribuzin at 1 – 2 1/3 lb/acre – annual broadleaves, sometimes tank-mixed with atrazine
 – Evik (ametryn) at 0.5 – 1.5 lb/acre – small-seeded broadleaves, tank-mixed with atrazine. Mostly used at 0.25 lb/acre early in the season with cool temperatures

• Growth regulators
 – 2,4-D amine at 1 1/2 – 2 pt/acre and dicamba at 1 – 1 1/2 pt/acre – annual broadleaves including vines
 – Tank-mixed with other herbicides to broaden control

• Callisto (mesotrione) at 3 fl oz/acre
 – Annual broadleaves
 – Commonly applied in combination with atrazine (from 1 pt/acre)
Postemergence herbicides: broadleaves

- Newly registered herbicides
 - Armezon (topramezone) (1 – 2 fl oz/acre)
 - Annual broadleaf weeds
 - Can be tank-mixed with atrazine, metribuzin, or Evik
 - Lumax (3.0 pt/acre)
 - Annual broadleaf weeds
 - Can be tank-mixed with 2,4-D, metribuzin, or Armezon
Postemergence herbicides: grasses & sedges

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>MOA</th>
<th>Chemical family</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrazine</td>
<td>Photosystem II inhibitor</td>
<td>s-triazine</td>
<td>5</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>Photosystem II inhibitor</td>
<td>as-triazine</td>
<td>5</td>
</tr>
<tr>
<td>Ametryn</td>
<td>Photosystem II inhibitor</td>
<td>s-triazine</td>
<td>5</td>
</tr>
<tr>
<td>S-metolachlor + Atrazine + Mesotrione</td>
<td>Long-chain fatty acid Photosystem II inhibitor HPPD inhibitor</td>
<td>Chloroacetamide s-triazine Triketone</td>
<td>15 5 27</td>
</tr>
<tr>
<td>Asulam</td>
<td>DHP inhibitor</td>
<td>Carbamate</td>
<td>18</td>
</tr>
<tr>
<td>Topramezone</td>
<td>HPPD inhibitor</td>
<td>Pyrazolone</td>
<td>27</td>
</tr>
<tr>
<td>Trifloxsulfuron</td>
<td>ALS inhibitor</td>
<td>Sulfonylurea</td>
<td>2</td>
</tr>
<tr>
<td>Halosulfuron</td>
<td>ALS inhibitor</td>
<td>Sulfonylurea</td>
<td>2</td>
</tr>
<tr>
<td>Halosulfuron + Dicamba</td>
<td>ALS inhibitor Auxin growth regulator</td>
<td>Sulfonylurea Benzoic acid</td>
<td>2 4</td>
</tr>
</tbody>
</table>
Postemergence herbicides: grasses

- Triazines
 - Metribuzin at 1 – 2⅓ – very small grasses
 - Ametryn at 0.5 to 1.5 lb/acre – small grasses, tank-mixed with atrazine
- Asulox (asulam) at 6 – 8 pt/acre and Envoke (trifloxysulfuron) at 0.3 oz/acre
 - Annual grasses
 - Phytotoxicity occurs when applied under high temperature and moisture stress
 - Post-directed to minimize phytotoxicity
 - Tank-mixed to enhance grass control
- Armezon at 1 – 2 fl oz/acre
 - Annual and perennial (bermudagrass) grasses
 - Effective in providing acceptable control of newly established bermudagrass and suppression of established populations
 - Can be tank-mixed with atrazine, metribuzin, Lumax, and Asulox to enhance grass control
Postemergence herbicides: sedges

• Sandea (halosulfuron) at \(\frac{3}{4} - 1\frac{1}{3}\) oz/acre and Envoke at 0.3 oz/acre
 – Halosulfuron is the most effective
 – Control programs are first implemented during the sugarcane fallow period using glyphosate to reduce tuber populations that reinfest subsequent plant cane

• Yukon (halosulfuron + dicamba) at 4 to 8 oz/acre
 – Nutsedge and broadleaf weed control
What constitutes an effective weed management program?

- Correct weed identification
- Selection of proper control measure(s)
- Using an integrated approach
- Correct implementation of a control program