BMP Research Update: Floating Aquatic Vegetation Impact on Farm Phosphorus Load

BMP Training
September 28, 2017

Samira Daroub
Timothy Lang
Jennifer Cooper
Everglades Research and Education Center
Success of the EAA BMP Program

Baseline Period (WY1980-1988)
Rainfall Adjusted Predicted Load: 218 t

WY2017
TP Load Reduction: 70 %
Measured TP Load: 66 t

25% TP Load Reduction
Requirement (Target)

First Compliance Year

Pre-BMP Implementation
Partial BMP Implementation
Full BMP Implementation

Annual % TP Load Reduction
5-year TP Load Reduction
FAV Project Goal

To provide growers with an additional tool in their efforts to reduce off-farm P loading in the Everglades Agricultural Area.
Objectives

1. Evaluate FAV management practices in the EAA farm canals for impact on
 a) Farm drainage water phosphorus (P) load
 b) P speciation of farm drainage water
 c) Canal sediment properties

2. Use research results to develop a BMP for managing FAV in farm canals that further lowers farm P loads.
Experimental Rationale

Anaerobic Canal:
- Max Sed P flux 10X
- Maximum Detritus

Aerobic Canal:
- Min Sed P Flux
- Minimal Detritus

Light weight/labile P-sediments

Denser/recalcitrant P-precipitates
Farm Descriptions and Locations

S-5A Sub-basin
- Farm 0401: 908 acres - cane w/corn
- Farm 2501: 823 acres - cane w/corn → sod
- Farm 1813: 594 acres - cane w/corn
- Farm 6117: 800 acres - cane w/corn

S-6 Sub-basin
- Farm 3102: 1608 - cane w/veg+corn
- Farm 3103: 602 acres - cane w/veg+corn

- Farm 4701: 630 acres - cane w/rice
- Farm 4702: 640 acres - cane w/rice
Data Collection

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Analysis</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAV Biomass</td>
<td>Species composition, Aerial Coverage, P Content, Biomass</td>
<td>Every two months</td>
</tr>
<tr>
<td>Canal Sediments</td>
<td>TP, Wet Density, Dry Density, OM (LOI), ash content</td>
<td>Twice annually</td>
</tr>
<tr>
<td></td>
<td>Sediment depth surveys</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P fractionation</td>
<td></td>
</tr>
<tr>
<td>Ambient Canal Water</td>
<td>TP/TDP/SRP (PP/DOP), Ca, DOC, pH, TSS</td>
<td>Every Two weeks</td>
</tr>
<tr>
<td></td>
<td>Hydrolab in situ: Temp, DO, ORP, SpCond</td>
<td>Daily every other week</td>
</tr>
<tr>
<td>Drainage Water</td>
<td>Flow volume, velocity</td>
<td>Drainage events</td>
</tr>
<tr>
<td></td>
<td>TP/TDP/SRP (PP/DOP), Ca, DOC, pH, TSS</td>
<td></td>
</tr>
</tbody>
</table>
SELECTED RESULTS

FAV Coverage
Farm Drainage Water
Example farm 4701/4702
Comparative Regression Analysis For P Load

\[\text{Treated}_i = b_0 + b_1 \times (\text{Control}_i) + e \]
Weekly P UAL - 4702 vs 4701

- Cal: $y = 1.47x$, $R^2 = 0.43$
- TMT: $y = 0.57x$, $R^2 = 0.15$

4702 P UAL (kg/acre) vs 4701 P UAL (kg/acre)
Summary

• To date, the relationships between farm pairs after imposing treatments have shown a positive FAV control treatment effect on farm pairs 4701/4702 and 6117/1813.

• The remaining two farm pairs have shown a modest positive treatment effect.
Activities for 2017-2018

- Continue data collection: Water, Sediments, and FAV
- In depth statistical analysis

<table>
<thead>
<tr>
<th></th>
<th>Drainage Water</th>
<th>Drainage Water</th>
<th>Drainage Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><10%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>10%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP (mg/L)</td>
<td>0.00</td>
<td>0.05</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>0.20</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>0.30</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>PP (mg/L)</td>
<td>0.00</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0.06</td>
<td>0.08</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>0.12</td>
<td>0.14</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRP (mg/L)</td>
<td>0.00</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0.06</td>
<td>0.08</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>0.12</td>
<td>0.14</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R = 0.318
p = 0.027

R = 0.338
p = 0.018

R = 0.211
p = 0.150
Extension publications:
http://edis.ifas.ufl.edu/

University of Florida IFAS Extension

Search
Results 1 - 10 of about 36 for Darnell, Samira H. Publication...
Personnel

Samira Daroub, PhD Principal Investigator
Timothy Lang, PhD Project Manager
Jennifer Cooper, PhD Research Associate
Viviana Nadal, MS Head Chemist
Irina Ognevich, BS Senior Chemist
Anne Sexton, PhD Postdoc
Pablo Vital, AA Field Technician
Johnny Mosley, AA Field Technician

NELAC Certified LAB: Total P; Ortho P
Thank You!

Questions?