Flat Land, Low Level Farm Drainage

Mark Howell
Florida Crystals
September 26, 2013
Pumping

- Head
- Pump Size
- Power
- Discharge Arrangement
- Problems To Avoid
Pump Stations
Head From The Field To The Pump

- Start With The Desired Field Water Elevation, 8 Feet
- - .2 Feet For The Field Ditch And Field Culvert
- - .2 Feet For The Lateral
- -.2 Feet For The Lateral Culvert
- 1 Foot for the 2 Miles Long Main Canal
- -.4 Feet For 2 Crossings With Culverts
- **Yields A Pump Shut Off Or Hold For 6 Hours At Elevation 6 Feet**
- The Maximum Outside Water Level Elevation is 12.8 Feet
- A Maximum Static Head of 6.8 Feet For This Site

- **The Pump Will Create This Lower Water Surface Elevation To Which Water Flows From The Farm**
Static Head

- Static Head Is The Minimum Head Of The Pump Station
- All Other Head Elements Add To It
- **These Other Head Elements Should Be Controlled To The Maximum Extent Practicable**
- The Goal Is to Use Minimum Power
Average Condition Total Head

• From Pump Data I Had An Average Static Head of 4.2 to 4.6 Feet As Normal
• Add To That Velocity Head and Drag Created By Piping to Calculate the Total Head Sometimes Referred To as Total Dynamic Head
• That Is The Work Load (Head) For The Pump

• This Where The Pump Size And Configuration Is Selected To Minimize Power Input
Pump Size At Max Head

- **30”**
 - **16,000 GPM**
 - **6.8’ Static Head**
 - **9.11’ TDH**
 - **42.5 HP**
 - **Fuel Advantage 27%**

- **24”**
 - **16,000 GPM**
 - **6.8’ Static Head**
 - **11.99’ TDH**
 - **54.3 HP**
The Same Pumps At Average Head

- **30”**
 - 16,000 GPM
 - 4.6’ Static Head
 - 6.91’ TDH
 - 32.64 HP
 - Fuel Advantage 37.6%

- **24”**
 - 16,000 GPM
 - 4.6’ Static Head
 - 9.79’ TDH
 - 44.93 HP
Choosing lower velocity pump systems can save 25% or more of the fuel costs. Smaller pumps pushed to high velocities can be expensive when the fuel is considered.
Then, The Cost Of Power

• Currently Diesel Fuel Costs Compared to Electric Costs Will Give Electricity Approximately a 50% Advantage

• Using An Electric Motor If Electric Power is Available In A Multiple Pump Station Can Save Significant Money Because The Electric Pump Will Move 70% Of the Water In Any One Year At A 50% Cost Reduction Compared To Diesel Fuel
Diesel Power Curve

• A Diesel Engine Operated at Part Of The Rated RPM and Part Of The Rated HP Will Loose 12% to 25%+ Off Of Potential Best Efficiency
Electric Bottom Line

• An Electric Motor At Part HP will Lose About 7% of Potential Best Efficiency

• Add This to The Cost Of Power And You Will Realize The 50%+ Fuel Cost Advantage With an Electric Motor

• Caveat, Fuel And Electricity Prices Are Subject to Change.
Wire (Power) to Water Efficiency

1. A Comparison Of The Static Head To The Total Head
2. A Comparison Of Power Used For Different Pumping Configurations
3. What Configuration Uses Minimum Power?

What Is The Cost To Move Water Off Of The Farm? Assumes Efficient Pump Speed And Engine Speed And 75%+ Power Use
1,000 Acres, 17” Per Year, Avg. 6.9’ TDH

Diesel @ Best Efficiency, $3.40/Gal, $2982/yr
Electricity Avg Cost $0.11/KWH, $1853/yr

KSU Irrigation Energy Cost
Kevin Dhuyveter
Other Fuels

- **Propane** as LPG (300 psi tank) is viable as it costs about a third less than diesel fuel and engines the use it are pre-certified by EPA and bypass the diesel engine tier system.

- **Natural Gas** is also useful for the same reasons.
 - Many irrigation systems in the midwest have already converted to these types and away from diesel fuel and in some cases electricity.

Most did the change over for cost savings.
Discharge Method 1

- Submerged, Pipe Centerline

The CL Elevation Must Be At Or Lower Than The Outside Water Level

HW, 10.0'
LW, 6'
Prop X'

HW, 12.8'
CL, 10.2'
CL Always Submerged
Discharge Method 2

- The End Of The regain Tube Is Submerged
Basics

- *Method 1 Works Only If The Center Line Of The Discharge Pipe Is Submerged*
- *Method 2 Works If The End Of The Regain Tube Is Submerged*
Regain Tubes, No Waste
Centerline Of Pipe, Low Risk Of Waste
Centerline Too High, 80% Power Waste Compared To Typical Systems
Air Impingement

• Photo, Tim Lang
Air Impingement

- It is different than cavitation in that it causes the propeller a loss of vane vector. In short, it slips. The causes a constant loading and unloading of the driver/propeller resulting in extreme wear. All components go from low stress to high stress several times each minute.
Cavitation
Cavitation Result
Cavitation Effect

- In Cavitation The Water Is Separated By -1 Atmosphere + Submergence – Vapor Pressure Causing What You See As Bubbles And May Hear As A Metallic Pinging. This Effect Causes A Loss Of Vector And A Loss Of Metal. This Loss Of Vector Can Happen At A High And Unstable Frequency.
Pump Mismount

- Expensive, The Entire Water Control System Is Likely In Need
Staff Gauge Leveling

Addendum

- This Is A Simple Method To Check And Adjust Staff gauges